The poly(vinyl acetate) (PVAC) film was obtained by electropolymerization on the copper electrode using cyclic voltammetry performed in mixed electrolyte based on water/ethyl alcohol/acetic acid containing vinyl acetate (VAc) and benzoyl peroxide as polymerization initiator. The coatings were characterized by optical microscopy, scanning electron microscopy (SEM) and infrared (IR) spectroscopy. The corrosion was induced in hydrochloric acid solution using potentiodynamic measurements and electrochemical impedance spectroscopy (EIS). The microscopic and SEM images revealed the PVAC coating formation and IR spectroscopy confirmed that it exhibits the same characteristic bands as a standard PVAC sample. From the potentiodynamic polarization, the PVAC protective performance of 78% was computed. The EIS measurements showed the occurrence of the surface adsorbed layer with a higher impedance response to the frequency and a phase angle maximum shifted to lower values than those of uncoated samples. In addition, the VAc electropolymerization mechanism was discussed and the PVAC adsorption mechanism on the copper surface was proposed. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47320.