A series of transition-metal sulfide one-dimensional (1D) nanostructures have been synthesized by means of a general atmospheric pressure, chemical vapor deposition (APCVD) strategy. Vapour-liquid-solid (VLS) and vapour-solid (VS) mechanisms, along with the results of SEM and TEM observations, were used to explain the formation of these nanostructures. The regularity of the growth in the direction of the hexagonal nanowire is explored; we find that it prefers to grow along (1 0 0), (1 1 0), or (0 0 x) directions owing to particular crystal structures. The adopted synthetic route was expected to provide abundant useful 1D building blocks for the research of mesoscopic physics and fabrication of nanoscale devices.