The present study aimed to determine the anatomic distribution and developmental profile of alpha(2) and beta adrenoceptors (AR) in marine teleost brain. Alpha 2 and beta adrenoceptors were studied at different developmental stages by using [(3)H]clonidine and [(3)H]dihydroalprenolol, respectively, by means of in vitro quantitative autoradiography. Furthermore, immunohistochemical localization of the receptor subtypes was performed to determine their cellular distribution. Saturation studies determined a high-affinity component of [(3)H]clonidine and [(3)H]dihydroalprenolol binding sites. High levels of both receptors were found in preglomerular complex, ventral hypothalamus, and lateral torus. Dorsal hypothalamus and isthmus included high levels of alpha(2) AR, whereas pretectum and molecular and proliferative zone of cerebellum were specifically characterized by high densities of beta AR. From the first year of life, adult levels of both AR were found in most medial telencephalic, hypothalamic, and posterior tegmental areas. Decreases in both receptors densities with age were prominent in ventral and posterior telencephalic, pretectal, ventral thalamic, hypothalamic, and tegmental brain regions. Immunohistochemical data were well correlated with autoradiography and demonstrated the presence of alpha(2A), alpha(2C), beta(1), and beta(2) AR subtype-like immunoreactivity. Both the neuronal (perikaryal or dendritic) and the glial localization of receptors was revealed. The localization and age-dependent alterations in alpha(2) and beta AR were parallel to plasticity mechanisms, such as cell proliferation in periventricular thalamus, hypothalamus, and cerebellum. In addition, the biochemical characteristics, distribution pattern, and neuronal or glial specificity of the receptors in teleost brain support a similar profile of noradrenergic transmission in vertebrate brain evolution.