We describe here a novel, fast and inexpensive method for producing a 3D 'heart' structure that forms spontaneously, in vitro, from larval zebrafish (ZF). We have named these 3D 'heart' structures 'zebrafish heart aggregate(s)' (ZFHAs) and have characterised their basic morphology and structural composition using histology, immunohistochemistry, electron microscopy and mass spectrometry. After 2 days in culture, the ZFHA spontaneously form and become a stable contractile syncytium consisting of cardiac tissue derived by in vitro maturation, which beats rhythmically and consistently for more than 8 days. We propose this model as a platform technology, which can be developed further to study in vitro cardiac maturation, regeneration, tissue engineering and safety pharmacological/toxicology testing.