Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
To identify lipids with roles in tuberculosis disease, we systematically compared the lipid content of virulent Mycobacterium tuberculosis with the attenuated vaccine strain Mycobacterium bovis bacillus Calmette-Guérin. Comparative lipidomics analysis identified more than 1,000 molecular differences, including a previously unknown, Mycobacterium tuberculosis-specific lipid that is composed of a diterpene unit linked to adenosine. We established the complete structure of the natural product as 1-tuberculosinyladenosine (1-TbAd) using mass spectrometry and NMR spectroscopy. A screen for 1-TbAd mutants, complementation studies, and gene transfer identified Rv3378c as necessary for 1-TbAd biosynthesis. Whereas Rv3378c was previously thought to function as a phosphatase, these studies establish its role as a tuberculosinyl transferase and suggest a revised biosynthetic pathway for the sequential action of Rv3377c-Rv3378c. In agreement with this model, recombinant Rv3378c protein produced 1-TbAd, and its crystal structure revealed a cis-prenyl transferase fold with hydrophobic residues for isoprenoid binding and a second binding pocket suitable for the nucleoside substrate. The dual-substrate pocket distinguishes Rv3378c from classical cis-prenyl transferases, providing a unique model for the prenylation of diverse metabolites. Terpene nucleosides are rare in nature, and 1-TbAd is known only in Mycobacterium tuberculosis. Thus, this intersection of nucleoside and terpene pathways likely arose late in the evolution of the Mycobacterium tuberculosis complex; 1-TbAd serves as an abundant chemical marker of Mycobacterium tuberculosis, and the extracellular export of this amphipathic molecule likely accounts for the known virulence-promoting effects of the Rv3378c enzyme.TbAd | terpenyl transferase W ith a mortality rate exceeding 1.5 million deaths annually, Mycobacterium tuberculosis remains one of the world's most important pathogens (1). M. tuberculosis succeeds as a pathogen because of productive infection of the endosomal network of phagocytes. Its residence within the phagosome protects it from immune responses during its decades long infection cycle. However, intracellular survival depends on active inhibition of pH-dependent killing mechanisms, which occurs for M. tuberculosis but not species with low disease-causing potential (2). Intracellular survival is also enhanced by an unusually hydrophobic and multilayered protective cell envelope. Despite study of this pathogen for more than a century, the spectrum of natural lipids within M. tuberculosis membranes is not yet fully defined. For example, the products of many genes annotated as lipid synthases remain unknown (3), and mass spectrometry detects hundreds of ions that do not correspond to known lipids in the MycoMass and LipidDB databases (4, 5).To broadly compare the lipid profiles of virulent and avirulent mycobacteria, we took advantage of a recently validated metabolomics platform (4). This high performance liquid chromatography-mass spectrometry (HPLC-MS)...
To identify lipids with roles in tuberculosis disease, we systematically compared the lipid content of virulent Mycobacterium tuberculosis with the attenuated vaccine strain Mycobacterium bovis bacillus Calmette-Guérin. Comparative lipidomics analysis identified more than 1,000 molecular differences, including a previously unknown, Mycobacterium tuberculosis-specific lipid that is composed of a diterpene unit linked to adenosine. We established the complete structure of the natural product as 1-tuberculosinyladenosine (1-TbAd) using mass spectrometry and NMR spectroscopy. A screen for 1-TbAd mutants, complementation studies, and gene transfer identified Rv3378c as necessary for 1-TbAd biosynthesis. Whereas Rv3378c was previously thought to function as a phosphatase, these studies establish its role as a tuberculosinyl transferase and suggest a revised biosynthetic pathway for the sequential action of Rv3377c-Rv3378c. In agreement with this model, recombinant Rv3378c protein produced 1-TbAd, and its crystal structure revealed a cis-prenyl transferase fold with hydrophobic residues for isoprenoid binding and a second binding pocket suitable for the nucleoside substrate. The dual-substrate pocket distinguishes Rv3378c from classical cis-prenyl transferases, providing a unique model for the prenylation of diverse metabolites. Terpene nucleosides are rare in nature, and 1-TbAd is known only in Mycobacterium tuberculosis. Thus, this intersection of nucleoside and terpene pathways likely arose late in the evolution of the Mycobacterium tuberculosis complex; 1-TbAd serves as an abundant chemical marker of Mycobacterium tuberculosis, and the extracellular export of this amphipathic molecule likely accounts for the known virulence-promoting effects of the Rv3378c enzyme.TbAd | terpenyl transferase W ith a mortality rate exceeding 1.5 million deaths annually, Mycobacterium tuberculosis remains one of the world's most important pathogens (1). M. tuberculosis succeeds as a pathogen because of productive infection of the endosomal network of phagocytes. Its residence within the phagosome protects it from immune responses during its decades long infection cycle. However, intracellular survival depends on active inhibition of pH-dependent killing mechanisms, which occurs for M. tuberculosis but not species with low disease-causing potential (2). Intracellular survival is also enhanced by an unusually hydrophobic and multilayered protective cell envelope. Despite study of this pathogen for more than a century, the spectrum of natural lipids within M. tuberculosis membranes is not yet fully defined. For example, the products of many genes annotated as lipid synthases remain unknown (3), and mass spectrometry detects hundreds of ions that do not correspond to known lipids in the MycoMass and LipidDB databases (4, 5).To broadly compare the lipid profiles of virulent and avirulent mycobacteria, we took advantage of a recently validated metabolomics platform (4). This high performance liquid chromatography-mass spectrometry (HPLC-MS)...
1150 www.angewandte.de EinleitungTerpene oder Isoprenoide bilden die vielfältigste Naturstoffklasse und kommen in fast allen Lebensformen vor, wo sie unzählige Aufgaben -von hauptsächlich strukturellen (Cholesterin in Zellmembranen) bis funktionalen (Carotinoide bei der Photosynthese; Retinal beim Sehvorgang; Chinone beim Elektronentransfer) -übernehmen. [1] Tatsächlich leiten sich alle -zumindest teilweise -von den C 5 -Substraten Dimethylallyldiphosphat (DMAPP, 1; Schema 1) und Isopentenyldiphosphat (IPP, 2) ab: Normalerweise wird zunächst DMAPP in einer 1'-4-oder "Kopf-Schwanz"-Kondensation mit einem oder mehreren IPP-Molekülen unter Bildung von Geranyldiphosphat (GPP, 3; C 10 ), Farnesyldiphosphat (FPP, 4; C 15 ) oder Geranylgeranyldiphosphat (GGPP, 5; C 20 ) verknüpft. [2] FPP und GGPP kçnnen dann in "Kopf-Kopf"-Anordnung (manchmal auch als Schwanz-Schwanz-Anordnung bezeichnet [4] ) kondensieren, [3] um beispielsweise Dehydrosqualen (DHS, 6), Squalen (7) oder Phytoen (8) zu bilden, die Vorläufer von Carotinoiden wie b-Carotin (9), Sterolen wie Cholesterin (10) und Hopanoiden wie Bakteriohopantetrol (11) -einige der ältesten und häufigsten Naturstoffe. [1] Isoprenoide kçnnen auch verwendet werden, um Proteine posttranslational zu modifizieren (wichtig für die Signalübertragung in der Zelle), oder sie kçnnen zu zahlreichen Terpen-Naturstoffen cyclisiert werden: zu C 10 -Monoterpenen wie Menthol (12), C 15 -Sequiterpenen wie Farnesen (13) und Artemisinin (14) und C 20 -Diterpenen, die z. B. in Gibberellinsäure (15) und Taxol (16) überführt werden. Durch Pflanzen wird DMAPP in einem Ausmaß von ungefähr 100 Megatonnen pro Jahr in Isopren (17) umgewandelt -eine Reaktion, die als potenzielle Quelle für "erneuerbare" Brennstoffe und andere Produkte gegenwärtig interessant ist. [5] Die DMAPP-und IPP-Vorstufen werden über zwei verschiedene Reaktionswege synthetisiert: den Mevalonat- [6] und den Methylerythritolphosphat(MEP)-Weg. [7] Der Mevalonat-Weg wird von den meisten Eukaryoten (einschließlich Menschen) sowie von Archaebakterien [8] genutzt, während der MEP-Weg in den meisten Eubakterien vorkommt. Es gibt natürlich Ausnahmen, z. B. verwendet das Bakterium Staphylococcus aureus den Mevalonat-Weg, während (eukaryotische) Malariaparasiten den MEP-Weg nutzen. [9] In Pflanzen kommen beide Biosynthesewege vor, [7] wobei der MEP-Weg üblicherweise in den Plastiden zu finden ist und der Mevalonat-Weg im Cytosol: Sterole (Triterpene) werden über Mevalonat synthetisiert, während Hemi-, Mono-und Diterpene sowie Carotinoide (Tetraterpene) über MEP aufgebaut werden. Im Folgenden erläutern wir neuere Erkenntnisse bezüglich Struktur und Funktion bei vielen Schlüsselenzymen der Isoprenoid-Biosynthese: den Kopf-Terpene bilden die umfangreichste Klasse niedermolekularer Naturstoffe auf der Erde. Hier werden neuere Entwicklungen bei der Aufklärung von Struktur und Funktion der an der Terpen-Biosynthese beteiligten Proteine zusammengefasst. Die Strukturen dieser Enzyme bestehen aus sechs Hauptbausteinen oder Modulen (a,b,g,d,e und z...
Terpenes are the largest class of small molecule natural products on Earth, and the most abundant by mass. Here, we summarize recent developments in elucidating the structure and function of the proteins involved in their biosynthesis. There are 6 main building blocks or modules (α,β,γ,δ,ε and ζ) that make up the structures of these enzymes: the αα and αδ head-to-tail trans-prenyl transferases that produce trans-isoprenoid diphosphates from C5 precursors; the ε head-to-head prenyl transferases that convert these diphosphates into the tri-and tetra-terpene precursors of sterols, hopanoids and carotenoids; the βγ di- and tri-terpene synthases; the ζ head-to-tail cis-prenyl transferases that produce the cis-isoprenoid diphosphates involved in bacterial cell wall biosynthesis, and finally the α, αβ and αβγ terpene synthases that produce plant terpenes, with many of these modular enzymes having originated from ancestral α and β domain proteins. We also review progress in determining the structure and function of the two 4Fe-4S reductases involved in formation of the C5 diphosphates in many bacteria, where again, highly modular structures are found.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.