Charting the Universe of Metal Music Lyrics and Analyzing Their Relation to Perceived Audio Hardness
Isabella Czedik-Eysenberg,
Oliver Wieczorek,
Arthur Flexer
et al.
Abstract:We analyze the relationship between the musical and the lyrical content of metal music by combining automated audio feature extraction and quantitative text analysis on a corpus of 124,288 song lyrics from this genre. Based on this text corpus, a topic model is first constructed using Latent Dirichlet Allocation (LDA). For a subsample of 503 songs, scores for predicting perceived musical hardness (heaviness) are extracted using an audio feature model and corroborated via listening tests. By combining both audi… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.