Addressing within-field spatial variability for nitrogen (N) management to avoid over and under-use of nitrogen is crucial for optimizing crop productivity and ensuring environmental sustainability. In this study, we investigated the economic, environmental, and agronomic benefits of variable rate nitrogen application in potato (Solanum tuberosum L.). An online visible and near-infrared (vis-NIR) spectroscopy sensor was utilized to predict soil moisture content (MC), pH, total organic carbon (TOC), extractable phosphorus (P), potassium (K), magnesium (Mg), and cation exchange capacity (CEC) using a partial least squares regression (PLSR) models. The crop’s normalized difference vegetation index (NDVI) from Sentinel-2 satellite images was incorporated into online measured soil data to derive fertility management zones (MZs) maps after homogenous raster and clustering analyses. The MZs maps were categorized into high fertile (VR-H), medium–high fertile (VR-MH), medium–low fertile (VR-ML), and low fertile (VR-L) zones. A parallel strip experiment compared variable rate nitrogen (VR-N) with uniform rate (UR) treatments, adjusting nitrogen levels based on fertility zones as 50% less for VR-H, 25% less for VR-MH, 25% more for VR-ML, and 50% more for VR-L zones compared to the UR treatment. The results showed that the VR-H zone received a 50% reduction in N fertilizer input and demonstrated a significantly higher crop yield compared to the UR treatment. This implies a potential reduction in negative environmental impact by lowering fertilizer costs while maintaining robust crop yields. In total, the VR-N treatment received an additional 1.2 Kg/ha of nitrogen input, resulting in a crop yield increase of 1.89 tons/ha. The relative gross margin for the VR-N treatment compared to the UR treatment is 374.83 EUR/ha, indicating substantial profitability for the farmer. To further optimize environmental benefits and profitability, additional research is needed to explore site-specific applications of all farm resources through precision agricultural technologies.