2020
DOI: 10.1590/0102-77863550103
|View full text |Cite
|
Sign up to set email alerts
|

Comparativo de Prognósticos da Velocidade do Vento Utilizando Modelo WRF e Rede Neural Artificial

Abstract: Resumo O objetivo deste trabalho é melhorar a previsão da velocidade do vento usando o modelo atmosférico de mesoescala Weather Research and Forecasting (WRF) e Rede Neural Artificial (RNA) não linear auto regressiva com entrada externa (NARX), sem entrada externa (NAR). A acurácia dos prognósticos foi aferida com dados observados (OBS) mensurados a cada 10 min, em uma torre anemométrica de 50 m de altura, localizada em Craíbas região Agreste de Alagoas. A estatística univariada indicou que os prognósticos rep… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2

Citation Types

0
3
0
1

Year Published

2021
2021
2022
2022

Publication Types

Select...
2
1
1

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(4 citation statements)
references
References 17 publications
0
3
0
1
Order By: Relevance
“…This ANN is characterized by the variable Z, which is the time delay. The Z factor works as a memory that provides current and previous input values (Santos, et al, 2022;Santos, et al, 2020;Samet, et al, 2019).…”
Section: Prediction Via Artificial Neural Networkmentioning
confidence: 99%
See 1 more Smart Citation
“…This ANN is characterized by the variable Z, which is the time delay. The Z factor works as a memory that provides current and previous input values (Santos, et al, 2022;Santos, et al, 2020;Samet, et al, 2019).…”
Section: Prediction Via Artificial Neural Networkmentioning
confidence: 99%
“…Table 2 shows the final configuration of the ANN-NAR training phase, the architecture was configured to provide the NDC prediction based on the input/target values in the study period. The configuration of the parameters used was based on studies Santos, et al, 2020;Santos, et al, 2022).…”
Section: Prediction Via Artificial Neural Networkmentioning
confidence: 99%
“…O Brasil tem padrões de ventos considerado um dos melhores do mundo para produção de energia eólica, pois possui condições climáticas favoráveis, velocidade do vento ao longo do ano e um fator de capacidade acima da média mundial ( [14]). A Associação Brasileira de Energia Eólica (ABEEólica), informa que, ao nal de 2020, o Brasil atingiu 17,75 GW de potência eólica instalada acumulada com quase 700 usinas eólicas instaladas e mais de 7500 aerogeradores em operação, distribuídos em 12 estados, sendo 8 da região Nordeste ([1]).…”
Section: Introductionunclassified
“…Because of these computational difficulties, there is the possibility of applying artificial intelligence (AI) techniques to facilitate the processing of WRF-Hydro, seeking an improvement of the predictions made by modeling and post-processing, where it is possible to train the network with the measured data and even history of the WRF-Hydro itself to have a faster forecast and less computational computing costs. At this point, it is important to point out that AI has already been applied in the WRF model without the coupling of the water module, as [15][16][17][18][19][20] to improve the modeled results and predictability of future data. However, the application of AI together with WRF-Hydro has still been developed, as in the studies of [21,22].…”
Section: Introductionmentioning
confidence: 99%