Background: Although poor sleep health is associated with weight gain and obesity in the non-pregnant population, research on the impact of sleep health on weight change among pregnant people using a multidimensional sleep-health framework is needed. This study examined associations among mid-pregnancy sleep health indicators, multidimensional sleep health, and gestational weight gain (GWG). Methods: We conducted a secondary data analysis of the Nulliparous Pregnancy Outcome Study: Monitoring Mothers-to-be Sleep Duration and Continuity Study (n=745). Indicators of individual sleep domains (i.e., regularity, nap duration, timing, efficiency, and duration) were assessed via actigraphy between 16 and 21 weeks of gestation. We defined healthy sleep in each domain based on empirical thresholds. Multidimensional sleep health was based on sleep profiles derived from latent class analysis. Total GWG, the difference between self-reported pre-pregnancy weight and the last measured weight before delivery, was converted to z-scores using gestational age- and BMI-specific charts. GWG was defined as low (<-1 SD), moderate (-1 or +1 SD), and high (>+1 SD). Results: Nearly 50% of the participants had a healthy sleep profile (i.e., healthy sleep in most domains), whereas others had a sleep profile defined as having varying degrees of poor health in each domain. While indicators of individual sleep domains were not associated with GWG, multidimensional sleep health was related to low and high GWG. Participants with a sleep profile characterized as having low efficiency, late timing, and long sleep duration (vs. healthy sleep profile) had a higher risk (RR 1.7; 95% CI 1.0, 3.1) of low GWG a lower risk of high GWG (RR 0.5 95% CI 0.2, 1.1) (vs. moderate GWG). Conclusions: Multidimensional sleep health was more strongly associated with GWG than individual sleep domains. Future research should determine whether sleep health is a valuable intervention target for optimizing GWG.