Fluorescent proteins (FPs) have revolutionised the life sciences but the mechanism of chromophore maturation is still not fully understood. Incorporation of a photo-responsive non-canonical amino acid within the chromophore stalls maturation of Venus, a yellow FP, at an intermediate stage; the crystal structure reveals the presence of O2 located above a dehydrated enolate imidazolone (I) ring, close to the strictly conserved Gly67 that occupies a twisted conformation. His148 adopts an open conformation, potentially allowing O2 access to the chromophore. Absorption spectroscopy supported by QM/MM simulations suggest that the first oxidation step involves formation of a hydroperoxyl intermediate in conjunction with dehydrogenation of the methylene bridge. A fully conjugated mature chromophore is formed through release of H2O2 upon irradiation of this intermediate, both in vitro and in vivo. The possibility of interrupting and photochemically restarting chromophore maturation, and the mechanistic insights opens up new approaches for engineering optically controlled fluorescent proteins.