A method to reduce errors in estimates of polarimetric variables beyond those achievable with standard estimators is suggested. It consists of oversampling echo signals in range, applying linear transformations to decorrelate these samples, processing in time the sequences at fixed range locations to obtain various secondorder moments, averaging in range these moments, and, finally, combining them into polarimetric variables. The polarimetric variables considered are differential reflectivity, differential phase, and the copolar correlation coefficient between the horizontally and vertically polarized echoes. Simulations and analytical formulas confirm a reduction in variance proportional to the number of samples within the pulse compared to standard processing of signals behind a matched filter. This reduction is possible, however, if the signal-to-noise ratios (SNRs) are larger than a critical value. Plots of the critical SNRs for various estimates as functions of Doppler spectrum width and other parameters are provided.