Due to the high surface to volume silicon ratio and unique quasi onedimensional electronic structure, silicon nanowire based devices have properties that can outperform their traditional counterparts in many ways. To fabricate silicon nanowires, in principle there are a variety of different approaches. These can be classified into top-down and bottom-up methods. The choice of fabrication method is strongly linked to the target application. From an application point of view, electron devices based on silicon nanowires are a natural extension of the downscaling of a silicon metal insulator semiconductor transistor. However, the unique properties also allow implementing new device concepts like the junctionless transistor and new functionalities like reconfigurability on the device level. Sensor devices may benefit from the high surface to volume ratio leading to a very high sensitivity of the device. Also, solar cells and anodes in Li-ion batteries can be improved by exploiting the quasi one-dimensionality. This chapter will give a review on the state-of-the-art of silicon nanowire fabrication and their application in different types of devices.