This study aimed to develop polyvinyl alcohol (PVA) and kappa‐carrageenan (κCA) biocomposite films using a Pickering emulsion technique for wound care applications. Juniper essential oil and modified sepiolite were incorporated to enhance functionality, with films prepared via solvent casting and characterized for structural, thermal, and mechanical properties. The PCOS‐2 film exhibited the highest mechanical performance, with Young's modulus of 6.25 ± 1.3 MPa, tensile strength of 5.65 ± 1.7 MPa, and elongation at break of 608.96% ± 72.8%. Antibacterial assays showed inhibition zones of 9 and 10 mm against Staphylococcus aureus and Escherichia coli, respectively, for the PCOS‐2 film, while antioxidant activity reached 63% DPPH radical scavenging after 12 h. Additionally, porosity and hydrophilicity were enhanced, as indicated by contact angles of 55° for the control film and 71.2° for PCOS‐2. These results underscore the potential of PVA/κCA biocomposite films as sustainable and bioactive wound dressings, combining mechanical resilience, bioactivity, and environmental compatibility, with future efforts focused on optimizing antibacterial efficacy against gram‐negative bacteria and clinical validation.