We demonstrated that the ball-milled slag-SiC mixture is an effective catalyst to grow pyrrolic nitrogen-doped multiwall carbon nanotubes (N-MWCNTs) by aerosol assisted chemical vapor deposition (AACVD) method. N-MWCNTs synthesized at 800°C, 850°C and 900°C were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, x-ray powder diffraction (XRD), and x-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA). TEM characterizations revealed the presence of a bamboolike structure, a typical feature of nitrogen-doped carbon nanotubes. The presence of nitrogen was confirmed by the N1s XPS spectrum. Furthermore, a deconvolution of the N1s spectra revealed the presence of N-pyrrolic defects. This nitrogen functionality is investigated concerning the presence of silicon carbide material. Giant nanotubes with large diameters were obtained when SiC was added to the slag to be used as a substrate for N-MWCNTs synthesis. From Raman spectroscopy, the appearance of the D-band was observed, indicating the presence of topological defects that were also observed by TEM. XRD and TEM characterizations demonstrated the presence of Fe 3 C and α-Fe nanoparticles. The N-MWCNTs fabricated here could be used into (electro)catalytic applications or for reinforcing ceramic nanomaterial or polymers.
OPEN ACCESS RECEIVED