Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Background: The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), led to high morbidity and mortality rates worldwide. It is known that some patients, initially hospitalized in general wards, deteriorate over time and require advanced respiratory support (ARS). This study aimed to identify key risk factors predicting the need for ARS in patients during the pandemic's early months. Methodology: In this retrospective study, we included patients admitted within the first three months of the pandemic who were diagnosed with COVID-19 via reverse transcription polymerase chain reaction (RT-PCR). The patients who required ARS or invasive mechanical ventilation at admission were excluded. Data on demographics, comorbidities, symptoms, vital signs, and laboratory parameters were collected. Statistical analyses, including multivariate logistic regression and receiver operating characteristic (ROC) curve analysis, were performed to identify independent predictors of ARS and determine the cut-off point. Results: Among 162 patients, 32.1% required ARS. Key differences between ARS and non-ARS groups included age, body mass index (BMI), coronary artery disease prevalence, neutrophil count, C-reactive protein (CRP), ferritin, D-dimer, troponin T levels, neutrophil-to-lymphocyte ratio (NLR), systemic immune-inflammation response index (SIRI), and symptom-to-admission time. Multivariate analysis revealed that age, elevated CRP levels, elevated ferritin levels, and SIRI were significant predictors for ARS. The ROC curve for SIRI showed an area under the curve (AUC) of 0.785, with a cut-off value of 1.915. Conclusions: Age, CRP levels, ferritin levels, and SIRI are crucial predictors of the need for ARS in COVID-19 patients. The early identification of high-risk patients is essential for timely interventions and resource optimization, particularly during the early stages of pandemics. These insights may assist in optimizing strategies for future respiratory health crisis management.
Background: The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), led to high morbidity and mortality rates worldwide. It is known that some patients, initially hospitalized in general wards, deteriorate over time and require advanced respiratory support (ARS). This study aimed to identify key risk factors predicting the need for ARS in patients during the pandemic's early months. Methodology: In this retrospective study, we included patients admitted within the first three months of the pandemic who were diagnosed with COVID-19 via reverse transcription polymerase chain reaction (RT-PCR). The patients who required ARS or invasive mechanical ventilation at admission were excluded. Data on demographics, comorbidities, symptoms, vital signs, and laboratory parameters were collected. Statistical analyses, including multivariate logistic regression and receiver operating characteristic (ROC) curve analysis, were performed to identify independent predictors of ARS and determine the cut-off point. Results: Among 162 patients, 32.1% required ARS. Key differences between ARS and non-ARS groups included age, body mass index (BMI), coronary artery disease prevalence, neutrophil count, C-reactive protein (CRP), ferritin, D-dimer, troponin T levels, neutrophil-to-lymphocyte ratio (NLR), systemic immune-inflammation response index (SIRI), and symptom-to-admission time. Multivariate analysis revealed that age, elevated CRP levels, elevated ferritin levels, and SIRI were significant predictors for ARS. The ROC curve for SIRI showed an area under the curve (AUC) of 0.785, with a cut-off value of 1.915. Conclusions: Age, CRP levels, ferritin levels, and SIRI are crucial predictors of the need for ARS in COVID-19 patients. The early identification of high-risk patients is essential for timely interventions and resource optimization, particularly during the early stages of pandemics. These insights may assist in optimizing strategies for future respiratory health crisis management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.