Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
We consider the ideal Fermi gas of indistinguishable particles without spin but with electric charge, confined to a Euclidean plane $${{\mathbb {R}}}^2$$ R 2 perpendicular to an external constant magnetic field of strength $$B>0$$ B > 0 . We assume this (infinite) quantum gas to be in thermal equilibrium at zero temperature, that is, in its ground state with chemical potential $$\mu \ge B$$ μ ≥ B (in suitable physical units). For this (pure) state we define its local entropy $$S(\Lambda )$$ S ( Λ ) associated with a bounded (sub)region $$\Lambda \subset {{\mathbb {R}}}^2$$ Λ ⊂ R 2 as the von Neumann entropy of the (mixed) local substate obtained by reducing the infinite-area ground state to this region $$\Lambda $$ Λ of finite area $$|\Lambda |$$ | Λ | . In this setting we prove that the leading asymptotic growth of $$S(L\Lambda )$$ S ( L Λ ) , as the dimensionless scaling parameter $$L>0$$ L > 0 tends to infinity, has the form $$L\sqrt{B}|\partial \Lambda |$$ L B | ∂ Λ | up to a precisely given (positive multiplicative) coefficient which is independent of $$\Lambda $$ Λ and dependent on B and $$\mu $$ μ only through the integer part of $$(\mu /B-1)/2$$ ( μ / B - 1 ) / 2 . Here we have assumed the boundary curve $$\partial \Lambda $$ ∂ Λ of $$\Lambda $$ Λ to be sufficiently smooth which, in particular, ensures that its arc length $$|\partial \Lambda |$$ | ∂ Λ | is well-defined. This result is in agreement with a so-called area-law scaling (for two spatial dimensions). It contrasts the zero-field case $$B=0$$ B = 0 , where an additional logarithmic factor $$\ln (L)$$ ln ( L ) is known to be present. We also have a similar result, with a slightly more explicit coefficient, for the simpler situation where the underlying single-particle Hamiltonian, known as the Landau Hamiltonian, is restricted from its natural Hilbert space $$\text{ L}^2({{\mathbb {R}}}^2)$$ L 2 ( R 2 ) to the eigenspace of a single but arbitrary Landau level. Both results extend to the whole one-parameter family of quantum Rényi entropies. As opposed to the case $$B=0$$ B = 0 , the corresponding asymptotic coefficients depend on the Rényi index in a non-trivial way.
We consider the ideal Fermi gas of indistinguishable particles without spin but with electric charge, confined to a Euclidean plane $${{\mathbb {R}}}^2$$ R 2 perpendicular to an external constant magnetic field of strength $$B>0$$ B > 0 . We assume this (infinite) quantum gas to be in thermal equilibrium at zero temperature, that is, in its ground state with chemical potential $$\mu \ge B$$ μ ≥ B (in suitable physical units). For this (pure) state we define its local entropy $$S(\Lambda )$$ S ( Λ ) associated with a bounded (sub)region $$\Lambda \subset {{\mathbb {R}}}^2$$ Λ ⊂ R 2 as the von Neumann entropy of the (mixed) local substate obtained by reducing the infinite-area ground state to this region $$\Lambda $$ Λ of finite area $$|\Lambda |$$ | Λ | . In this setting we prove that the leading asymptotic growth of $$S(L\Lambda )$$ S ( L Λ ) , as the dimensionless scaling parameter $$L>0$$ L > 0 tends to infinity, has the form $$L\sqrt{B}|\partial \Lambda |$$ L B | ∂ Λ | up to a precisely given (positive multiplicative) coefficient which is independent of $$\Lambda $$ Λ and dependent on B and $$\mu $$ μ only through the integer part of $$(\mu /B-1)/2$$ ( μ / B - 1 ) / 2 . Here we have assumed the boundary curve $$\partial \Lambda $$ ∂ Λ of $$\Lambda $$ Λ to be sufficiently smooth which, in particular, ensures that its arc length $$|\partial \Lambda |$$ | ∂ Λ | is well-defined. This result is in agreement with a so-called area-law scaling (for two spatial dimensions). It contrasts the zero-field case $$B=0$$ B = 0 , where an additional logarithmic factor $$\ln (L)$$ ln ( L ) is known to be present. We also have a similar result, with a slightly more explicit coefficient, for the simpler situation where the underlying single-particle Hamiltonian, known as the Landau Hamiltonian, is restricted from its natural Hilbert space $$\text{ L}^2({{\mathbb {R}}}^2)$$ L 2 ( R 2 ) to the eigenspace of a single but arbitrary Landau level. Both results extend to the whole one-parameter family of quantum Rényi entropies. As opposed to the case $$B=0$$ B = 0 , the corresponding asymptotic coefficients depend on the Rényi index in a non-trivial way.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.