Pattern of fluid flow through open-cell foams is important because of its influence on the performance of processes such as filtration, adsorption and heterogeneous catalysis that make use of such foams. So far, however, the experimental verification of velocity profiles obtained by computational fluid dynamics (CFD) simulation was insufficient. Here, the effect of morphology of ceramic foams on local gas flow patterns is observed via the noninvasive magnetic resonance velocimetry (MRV) technique. In order to cross-validate the simulations with the experimental flow mapping results, micro-computed tomography (µCT) data of the entire foams were used for generating the computational network required for 3D CFD simulations of velocity fields within the pores. The results of CFD simulations and MRV measurements of gas flow showed a remarkable agreement with deviations mainly below 10 percent if the whole foam structure was utilized in CFD simulations. The qualitative and quantitative agreement between CFD and MRV results underlines the reliability of CFD simulations that are based on µCT data and underpins the capability of NMR-based measurements for in situ velocity measurements.
Graphic abstract