Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
This study assesses the impact of climate change and human activities on vegetation dynamics (kNDVI) on the Qinghai-Tibet Plateau (QTP) between 2000 and 2022, considering both lag and cumulative effects. Given the QTP’s high sensitivity to climate change and human activities, it is imperative to understand their effects on vegetation for the sustainable development of regional and national terrestrial ecosystems. Using MOD13Q1 NDVI and climate and human activity data, we applied methods such as Sen-MK, lag and cumulative effect analysis, improved residual analysis, and geographical detector analysis. The outcomes were as follows. (1) The vegetation kNDVI on the QTP showed an overall fluctuating growth trend between 2000 and 2022; improved regions were more significant than degraded regions, with improved regions primarily distributed in humid and semi-humid areas with favorable climate conditions, and degraded regions primarily in arid and semi-arid areas; this implies that climate conditions have a significant impact on vegetation changes on the QTP. (2) The analysis of lag and cumulative effects revealed that temperature and precipitation have a substantial cumulative effect on vegetation kNDVI on the QTP. The vegetation kNDVI showed a lag effect of 0 months and a cumulative effect of 1 month for temperature, and a lag effect of 0 months and a cumulative effect of 2 months for precipitation, respectively. (3) Improved residual analysis based on lag and cumulative effects revealed that human activities positively contributed 66% to the changes in vegetation kNDVI on the QTP, suggesting a notable positive impact of human activities. Geographical detector analysis indicated that, among different human activity factors affecting vegetation kNDVI changes, the explanatory power in 2005 and 2015 ranked as X3 (livestock density) > X1 (population density) > X2 (per capita GDP) > X4 (artificial afforestation density) > X5 (land use type), and in 2020, as X3 > X4 > X1 > X5 > X2. The explanatory power of afforestation density and land use type has relatively increased, indicating that recent efforts in ecological protection and restoration on the QTP, including developing artificial forest areas and afforestation programs, have considerably contributed to vegetation greening.
This study assesses the impact of climate change and human activities on vegetation dynamics (kNDVI) on the Qinghai-Tibet Plateau (QTP) between 2000 and 2022, considering both lag and cumulative effects. Given the QTP’s high sensitivity to climate change and human activities, it is imperative to understand their effects on vegetation for the sustainable development of regional and national terrestrial ecosystems. Using MOD13Q1 NDVI and climate and human activity data, we applied methods such as Sen-MK, lag and cumulative effect analysis, improved residual analysis, and geographical detector analysis. The outcomes were as follows. (1) The vegetation kNDVI on the QTP showed an overall fluctuating growth trend between 2000 and 2022; improved regions were more significant than degraded regions, with improved regions primarily distributed in humid and semi-humid areas with favorable climate conditions, and degraded regions primarily in arid and semi-arid areas; this implies that climate conditions have a significant impact on vegetation changes on the QTP. (2) The analysis of lag and cumulative effects revealed that temperature and precipitation have a substantial cumulative effect on vegetation kNDVI on the QTP. The vegetation kNDVI showed a lag effect of 0 months and a cumulative effect of 1 month for temperature, and a lag effect of 0 months and a cumulative effect of 2 months for precipitation, respectively. (3) Improved residual analysis based on lag and cumulative effects revealed that human activities positively contributed 66% to the changes in vegetation kNDVI on the QTP, suggesting a notable positive impact of human activities. Geographical detector analysis indicated that, among different human activity factors affecting vegetation kNDVI changes, the explanatory power in 2005 and 2015 ranked as X3 (livestock density) > X1 (population density) > X2 (per capita GDP) > X4 (artificial afforestation density) > X5 (land use type), and in 2020, as X3 > X4 > X1 > X5 > X2. The explanatory power of afforestation density and land use type has relatively increased, indicating that recent efforts in ecological protection and restoration on the QTP, including developing artificial forest areas and afforestation programs, have considerably contributed to vegetation greening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.