Electrocatalytic metals and microorganisms can be combined for CO 2 conversion in microbial electrosynthesis (MES). However, a systematic investigation on the nature of interactions between metals and MES is still lacking. To investigate this nature, we integrated a copper electrocatalyst, converting CO 2 to formate, with microorganisms, converting CO 2 to acetate. A co-catalytic (i. e. metabolic) relationship was evident, as up to 140 mg L À 1 of formate was produced solely by copper oxide, while formate was also evidently produced by copper and consumed by microorganisms producing acetate. Due to nonmetabolic interactions, current density decreased by over 4 times, though acetate yield increased by 3.3 times. Despite the antimicrobial role of copper, biofilm formation was possible on a pure copper surface. Overall, we show for the first time that a CO 2 -reducing copper electrocatalyst can be combined with MES under biological conditions, resulting in metabolic and non-metabolic interactions.