The lack of highly effective drugs in many malignancies has prompted scientific interest in the development of alternative treatment strategies. Cellular immunotherapy involving the adoptive transfer of immune cells that potently recognize and eliminate malignantly transformed cells has become a promising new tool in the anticancer armory. Studies suggest that the unique biological properties of umbilical cord blood (UCB) cells could precipitate enhanced anticancer activity; hence, UCB could be an optimal source for immunotherapy with the potential to provide products with 'off-the-shelf' availability. Areas covered: In this review, the authors summarize data on the transfer of naturally occurring or genetically modified UCB cells to treat cancer. The focus within is on the phenotypic and functional differences compared to other sources, the alloreactive and anticancer properties, and manufacturing of these products. Therapies utilizing cytokine-induced killer (CIK) cells, natural killer (NK) cells and chimeric antigen receptor (CAR) T-cells, are discussed. Expert opinion: The cellular immunotherapy field has become a growing, exciting area that has generated much enthusiasm. There is evidence that anticancer immunotherapy with UCB-derived products is feasible and safe; however, considering the limited number of clinical trials using UCB-derived products, further studies are warranted to facilitate translation into clinical practice.