Zinc coatings protect steel from corrosion in two ways, namely, through barrier and galvanic protection. However, zinc itself undergoes and suffers rapid corrosion under conditions involving high moisture and humidity. Under these conditions, moisture accumulation and/or condensation takes place within the folds of the galvanized coils under storage leading to formation of patches of powdery "white rust" or "storage stains". Therefore, traditionally chemical treatments have been imparted to the hot dip galvanized coils/ sheets to provide the zinc coating with a relatively, shortterm corrosion resistance during the transit to the place of application. Conventionally, chromic acid based treatments (termed "chromating") have been employed in the galvanizing industry to passivate the virgin, hot-dipped zinc coating surface by developing complex, insoluble zinc chromate films superficially. However, with the imposition of stringent environmental regulations on the use and discharge of chromium compounds and effluents, considerable amount of research has been recently devoted, the world over, to find alternative technologies for passivation of hot dip galvanized sheet. Some of such treatments comprise phosphating, molybdating and passivation using silicon-based organofuntional compounds called "silanes" and other proprietary organic chemicals. Although, none of these treatments match the effectiveness and potency of a chromate treatment and the protection afforded by it, still they are seen as potentially viable substitutes for passivation and protection of galvanized sheet against white rust in galvanizing community. Besides, most of these emerging treatments are in a fledgling state of research and their application to continuous galvanizing lines needs to be explored sufficiently for them to be considered as suitable replacements to chromating and to be adopted in a hot dip galvanizing line.The present paper starts with a brief introduction to the mechanism of corrosion of zinc and the sacrificial protection of steel in hot dip galvanized coatings, following which, it reviews, in some detail, the inorganic chemical treatments such as chromating and phosphating for the passivation of hot dip galvanized steel sheet. The paper also briefly touches upon some of the recently-researched alternative treatments for the protection and corrosion resistance of zinc coatings on steel.