In decision-making problems reward function plays an important role in finding the best policy. Reinforcement Learning (RL) provides a solution for decision-making problems under uncertainty in an Intelligent Environment (IE). However, it is difficult to specify the reward function for RL agents in large and complex problems. To counter these problems an extension of RL problem named Inverse Reinforcement Learning (IRL) is introduced, where reward function is learned from expert demonstrations. IRL is appealing for its potential use to build autonomous agents, capable of modeling others, deprived of compromising in performance of the task. This approach of learning by demonstrations relies on the framework of Markov Decision Process (MDP). This article elaborates original IRL algorithms along with their close variants to mitigate challenges. The purpose of this paper is to highlight an overview and theoretical background of IRL in the field of Machine Learning (ML) and Artificial Intelligence (AI). We presented a brief comparison between different variants of IRL in this article.