The use of artificial intelligence and, more specifically, deep learning methods in chemistry is becoming increasingly common. Applications in informatics fields, such as cheminformatics and proteomics, structural biology, and spectroscopy, including NMR, are on the rise. Recent developments in model architectures, such as graph convolutional neural networks and transformers, have been enabled by advancements in computational hardware and software. However, model architectures with more predictive power often require larger amounts of training data, which can be challenging to acquire, but this requirement can be mitigated through techniques like pretraining and fine‐tuning. In spite of these successes, challenges remain, such as normalization and scaling of data, availability of experimentally acquired data, and model explainability.