Current technology is unable to produce massively deployable, fully automated vehicles that do not require human intervention. Given that such limitations are projected to persist for decades, scenarios requiring a driver to assume control of a semiautomated vehicle, and vice versa, will remain a feature of modern roadways for the foreseeable future. Herein, we adopt a comprehensive perspective of this problem by simultaneously considering operational design domain supervision, driver and environment monitoring, trajectory planning, and driver-intervention performance assessment. More specifically, we develop a modeling framework for each of the aforementioned functions by leveraging decision analysis and Bayesian forecasting. Utilizing this framework, a suite of algorithms is subsequently proposed for driving-mode management and early warning emission, according to a management by exception principle. The efficacy of the developed methods is illustrated and examined via a simulated case study.