In Sub‐Saharan Africa, experts visually examine the plants and look for disease symptoms on the leaves to diagnose cassava diseases, a subjective method. Machine learning algorithms have been employed to quickly identify and classify crop diseases. In this study, we propose a model that integrates a transfer learning approach with a deep Gaussian convolutional neural network model. In this study, two pre‐trained transfer learning models were used, that is, MobileNet V2 and VGG16, together with three different kernels: a hybrid kernel (a product of a squared exponential kernel and a rational quadratic kernel), a squared exponential kernel, and a rational quadratic kernel. In experiments using MobileNet V2 and the three kernels, the hybrid kernel performed better, with an accuracy of 90.11%, compared to 86.03% and 85.14% for the squared exponential kernel and a rational quadratic kernel, respectively. Additionally, experiments using VGG16 and the three kernels showed that the hybrid kernel performed better, with an accuracy of 88.63%, compared to the squared exponential kernel's accuracy of 84.62% and the rational quadratic kernel's accuracy of 83.95%, respectively. All the experiments were done using a traditional computer with no access to GPU and this was the major limitation of the study.