The potential use of time-series Sentinel-1 synthetic aperture radar (SAR) data for rock unit discrimination has never been explored in previous studies. Here, we employed time-series Sentinel-1 data to discriminate Dananhu formation, Xinjiang group, Granite, Wusu group, Xishanyao formation, and Diorite in Xinjiang, China. Firstly, the temporal variation of the backscatter metrics (backscatter coefficient and coherence) from April to October derived from Sentinel-1, was analyzed. Then, the significant differences of the time-series SAR metrics among different rock units were checked using the Kruskal–Wallis rank sum test and Tukey’s honest significant difference test. Finally, random forest models were used to discriminate rock units. As for the input features, there were four groups: (1) time-series backscatter metrics, (2) single-date backscatter metrics, (3) time-series backscatter metrics at VV, and (4) VH channel. In each feature group, there were three sub-groups: backscatter coefficient, coherence, and combined use of backscatter coefficient and coherence. Our results showed that time-series Sentinel-1 data could improve the discrimination accuracy by roughly 9% (from 55.4% to 64.4%), compared to single-date Sentinel-1 data. Both VV and VH polarization provided comparable results. Coherence complements the backscatter coefficient when discriminating rock units. Among the six rock units, the Granite and Xinjiang group can be better differentiated than the other four rock units. Though the result still leaves space for improvement, this study further demonstrates the great potential of time-series Sentinel-1 data for rock unit discrimination.