Filters are two-port networks that may pass or attenuate frequencies within defined ranges and can alter the frequency response of any system. In the present research study, the goals and optimization controller embedded with (ADS2019) are used to design Butterworth and Elliptic bandpass filters with frequency ranges of (18GHz -38GHz), a bandwidth of (7GHz), stopband attenuation of (S21=-60dB), and passband attenuation of (S21=-1dB). Three types of each filter (Hp-Lp 6th order -3rd order -6th order) are simulated and optimized to choose the best (C, L) values. The selected filters are redesigned using the Design Filter Guide, and the simulation during this phase yields different values for (C, L). The designed circuit is then transformed into a microstrip model using transmission lines for open and short circuits. The study investigates the differences between each filter in BW-f center-attenuation at the stopband. In the last phase of the study, the circuit of each filter is transformed using a microstrip transmission line to obtain the (W, L) for each component of each filter. Finally, the study compares past studies and research projects in this field.