Being biodegradable and renewable, polyhydroxyalkanoates (PHAs), a green polymer, attract much attentions as potential alternative for conventional plastics due to increased concern towards environmental issue and resource depletion. However, PHAs not only have suffered some economic disadvantages on the market, and its environmental-friendliness has also been questioned as well. Therefore, there is a growing demand to improve both economic and environmental performances of PHAs production, especially at earlier stage of the process where there are plenty of opportunities and the modification cost is cheap. Therefore, a preliminary integrated assessment is introduced to provide a rapid evaluation for PHAs biosynthesis at R&D stage by coupling material cost analysis together with lifecycle assessment. Using fuzzy approach multi-objective optimization, crude glycerol is the most optimum substrate for biopolymer productions from Cupriavidus necator. The insight from sensitivity analysis has showed that the integrated assessment is sensitive to fluctuation in price and yield of substrate, while maintaining its robustness as similar result is obtained when using different multi-objective optimization tools. Providing some novel insights on PHAs biosynthesis like performance and site selection influencing factor, the integrated assessment can be used to facilitate screening for large-scale production of PHAs.