To our loved ones. A tous ceux que nous aimons.
DRAFT --May 15, 2007 --DRAFT --May 15, 2007 --DR PrefaceThe objective of this book is to present systematic methods for achieving stable, agile and efficient locomotion in bipedal robots. The fundamental principles presented here can be used to improve the control of existing robots and provide guidelines for improving the mechanical design of future robots. The book also contributes to the emerging control theory of hybrid systems. Models of legged machines are fundamentally hybrid in nature, with phases modeled by ordinary differential equations interleaved with discrete transitions and reset maps. Stable walking and running correspond to the design of asymptotically stable periodic orbits in these hybrid systems and not equilibrium points. Past work has emphasized quasi-static stability criteria that are limited to flat-footed walking. This book represents a concerted effort to understand truly dynamic locomotion in planar bipedal robots, from both theoretical and practical points of view.The emphasis on sound theory becomes evident as early as Chapter 3 on modeling, where the class of robots under consideration is described by lists of hypotheses, and further hypotheses are enumerated to delineate how the robot interacts with the walking surface at impact, and even the characteristics of its gait. This careful style is repeated throughout the remainder of the book, where control algorithm design and analysis are treated. At times, the emphasis on rigor makes the reading challenging for those less mathematically inclined. Do not, however, give up hope! With the exception of Chapter 4 on the method of Poincaré sections for hybrid systems, the book is replete with concrete examples, some very simple, and others quite involved. Moreover, it is possible to cherry-pick one's way through the book in order to "just figure out how to design a controller while avoiding all the proofs." This is mapped out below and in Appendix A.The practical side of the book stems from the fact that it grew out of a project grounded in hardware. More details on this are given in the acknowledgements, but suffice it to say that every stage of the work presented here has involved the interaction of roboticists and control engineers. This interaction has led to a control theory that is closely tied to the physics of bipedal robot locomotion. The importance and advantage of doing this was first driven home to one of the authors when a multipage computation involving the Frobenius Theorem produced a quantity that one of the other authors identified as angular momentum, and she could reproduce the desired result in two lines! Fortunately, the power of control theory produced its share of eye-opening moments on the robotic side of the house, such as when days and DRAFT --May 15, 2007 --DRAFT --May 15, 2007 --DR days of simulations to tune a "physically-based" controller were replaced by a ten minute design of a PI-controller on the basis of a restricted Poincaré map, and the controller worked l...