In arid region, direct infiltration from rainfall contributes little to groundwater compared with localized recharge from streams. How to quantify riverbed infiltration to groundwater systems is an important area of research in hydrology. In this study, saturated permeability coefficient of a riverbed in an arid inland river basin located in the northwest of China was obtained by Guelph Permeameter and laboratory analysis methods. The characteristics of riverbed infiltration and its spatial patterns were analysed using geostatistical method and kriging method. The results showed that the saturated permeability coefficient varied from 0.089 to 2.802 m/d, indicating moderate degree of variability. The Guelph Permeameter and laboratory test methods provided consistent estimates of saturated permeability coefficient. There was a strong spatial correlation for Kfs of the riverbed in this study area when Range (A) was less than 0.276°, suggesting that the maximum sampling distance for saturated permeability coefficient of the riverbed was 0.276° under isotropic conditions. The Kfs near the centre of the riverbed was higher than the value near riverbank. The Kfs values decreased in the direction of upstream to downstream in the Heihe River Basin. The riverbed mechanical composition, initial soil water content and bulk density have significant influence up on the riverbed infiltration. Besides, the topographical factors including the width, altitude and distance factors of the riverbed together impacted the riverbed infiltration and the slope of the riverbed and also influenced the riverbed infiltration. Copyright © 2015 John Wiley & Sons, Ltd.