Thin film perovskite-type oxide SrTiO3 has been grown epitaxially on Si(001) substrate by molecular beam epitaxy. Reflection high energy electron diffraction and x-ray diffraction analysis indicate high quality SrTiO3 heteroepitaxy on Si substrate with SrTiO3(001)//Si(001) and SrTiO3[010]//Si[110]. The SrTiO3 surface is atomically as smooth as the starting substrate surface, with a root mean square roughness of 1.2 Å observed by atomic force microscopy. The thickness of the amorphous interfacial layer between SrTiO3 and Si has been engineered to minimize the device short channel effect. An effective oxide thickness <10 Å has been obtained for a 110 Å thick dielectric film. The interface state density between SrTiO3 and Si is 6.4×1010 cm−2 eV−1, and the inversion layer carrier mobilities are 221 and 62 cm2 V−1 s−1 for n- and p-channel metal–oxide–semiconductor devices with 1.2 μm effective channel length, respectively. The gate leakage in these devices is two orders of magnitude smaller than a comparable SiO2 gate dielectric metal–oxide–semiconductor field effect transistors.