Brain-Computer Interface (BCI) using Electroencephalography (EEG) enables non-invasive direct control between human brain and machine and opens up new possibilities in providing healthcare solutions for people with severe motor impairment. This paper reviews the recent trends in neuroprostheses and presents a conceptual design for the development of a cost-effective neuroprosthetic hand deploying EEG signals. Towards the development of a brain-computer interface for neuroprostheses, EEG signals are recorded from healthy subjects using the Emotiv Suite Software. The recognition phase and signal analysis are performed using the EEGLab Software. Signal processing is required until clear rhythmic waves are obtained as a command to control a prosthetic hand. A Graphical User Interface (GUI) will be developed using Matlab Software and aided with 3D Animation as a medium of interaction for basic training for the patient before using the prosthetic hand.