Dravet syndrome is the most studied form of genetic epilepsy. It has now been clarified that the clinical spectrum of the syndrome does not have firmly established boundaries. The core phenotype is characterized by intractable, mainly clonic, seizures precipitated by increased body temperature with onset in the first year of life and subsequent appearance of multiple seizures types still precipitated by, but not confined to, hyperthermia. Cognitive impairment is invariably present when the full syndrome is manifested. This complex of symptoms is related to mutations in the SCN1A gene, which are often de novo and constitutional but can also be inherited from a parent with less severe clinical manifestations or be present as somatic mosaicism. Inheritance from less severely affected individuals, at times only having experienced a few febrile seizures, and differences in severity, even within the same family, with a subset of patients only showing fragments of the syndrome, testify to a remarkable phenotypic heterogeneity as far as severity, but less so clinical phenomenology, are concerned. This characteristic, together with underascertainment of SCN1A mutations due to human errors or technical limitations in uncovering alternative pathogenic molecular mechanisms, such as genomic rearrangements or poison exons, has contributed to making clinicians and geneticists suspicious that Dravet syndrome may be caused by more than one gene. This opinion has been further amplified by the description of other genetic disorders, such as PCDH19-or CHD2-related epilepsy, whose phenotypes have included fragments of the Dravet phenotypic spectrum, and by the suboptimal characterization of phenotypes associated with mutations in SCN1B, HCN1, KCN2A, GABRA1, GABRG2, and STXBP1.