Transcranial alternating current stimulation (tACS) modulates oscillations in a frequency- and location-specific manner and affects cognitive and motor functions. This effect appears during stimulation as well as “offline,” following stimulation, presumably reflecting neuroplasticity. Whether tACS produces long-lasting aftereffects that are physiologically meaningful, is still of current debate. Thus, for tACS to serve as a reliable method for modulating activity within neural networks, it is important to first establish whether “offline” aftereffects are robust and reliable. In this study, we employed a novel machine-learning approach to detect signatures of neuroplasticity following 10 Hz tACS to two critical nodes of the motor network: left motor cortex (lMC) and right cerebellum (rCB). To this end, we trained a classifier to distinguish between signals following lMC-tACS, rCB-tACS and sham. Our results demonstrate better classification of EEG signals in both theta (θ, 4 Hz-8 Hz) and alpha (α, 8 Hz-13 Hz) frequency bands to lMC-tACS compared to rCB-tACS/sham, at lMC-tACS stimulation location. Source reconstruction allocated these effects to premotor cortex. Stronger correlation between classification accuracies in θ and α in lMC-tACS suggested an association between θ and α efffects. Together these results suggest that EEG signals over premotor cortex contains unique signatures of neuroplasticity following 10 Hz motor cortex tACS.