The photovoltaic and electrical properties of organic semiconductors are characterized by their low dielectric constant, which leads to the formation of polarons and Frenkel excitons. The low dielectric constant of organic semiconductors has been suggested to be significantly influential in geminate and bimolecular recombination losses in organic photovoltaics (OPVs). However, despite the critical attention that the dielectric constant has received in literature discussions, there has not yet been a thorough study of the dielectric constant in common organic semiconductors and how it changes when blended. In fact, there have been some inconsistent and contradictory reports on such dielectric constants, making it difficult to identify trends. Herein, at first a detailed explanation of a specific methodo logy to determine the dielectric constant in OPV materials with impedance spectroscopy is provided, including guidelines for possible experimental pitfalls. Using this methodology, the analysis for the dielectric constant of 17 common neat organic semiconductors is carried out. Furthermore, the relationship between the dielectric constant and blend morphology are studied and determined. It is found that the dielectric constant of a blend system can be very accurately predicted solely based on the dielectric con stants of the neat materials, scaled by their respective weight ratios in the blend film.