Mechanisms to maintain genomic integrity are essential for cells to remain viable. Not surprisingly, disruption of key DNA damage response pathway factors, such as ataxia telangiectasiamutated (ATM)/ataxia telangiectasia and RAD3-related (ATR) results in loss of genomic integrity. Here, a synthetic lethal siRNA-screening approach not only confirmed ATM but identified additional replication checkpoint proteins, when ablated, enhanced ATR inhibitor (ATRi) response in a high-content g-H2AX assay. Cancers with inactivating ATM mutations exhibit impaired DNA double-stranded break (DSB) repair and rely on compensatory repair pathways for survival. Therefore, impairing ATR activity may selectively sensitize cancer cells to killing. ATR inhibition in an ATM-deficient context results in phosphorylation of DNA-dependent protein kinase catalytic subunits (DNAPKcs) and leads to induction of g-H2AX. Using both in vitro and in vivo models, ATR inhibition enhanced efficacy in ATM loss-offunction mantle cell lymphoma (MCL) compared with ATM wildtype cancer cells. In summary, single-agent ATR inhibitors have therapeutic utility in the treatment of cancers, like MCL, in which ATM function has been lost.Implications: These data suggest that single-agent ATR inhibitors have therapeutic utility and that ATR uses a complex and coordinated set of proteins to maintain genomic stability that could be further exploited.