It is agreed that before the creation of particles, space was completely devoid of matter and radiation. In this study, we assume that the absolute void comprises 4 dimensions, namely 3 spatial dimensions and a force equivalent representing the factor of change among the elementary dimensions. Our hypothesis is based on the expansion of the spatial dimensions and the subsequent space instability. We demonstrated that when the equivalent outward force strength exceeds a critical limit, it collapses inwardly to restore the equilibrium of the system. Subsequently, the void inside the collapsed force equivalent acts as a void in a confined system, and the energy of the system remains conserved at all stages. With the decrease in the spatial dimensions owing to the collapse, the energy density increases, and at the final stage, the energy in the confined system becomes concentrated, thereby forming a solid state of energy. In this solid state of energy, a particle becomes the source of the elementary particles. The created high-energy sources are controlled by the internal and external forces of the source and all the entities in its external force field until equilibrium is reached. This article gives a summary of the Big Bang theory and its problems, which are further discussed in detail. This article will help in understanding how elementary dimensions play a role in the formation of elementary particles. Quark-gluon plasma, inflation, gravitational collapse, and gravitational lensing provide evidence that supports the elementary dimensions theory presented in this paper.