Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Carbon fiber-reinforced polymer (CFRP) components were extensively used and current studies mainly refer to CFRP laminates. The dynamic performance of the complicated CFRP antenna beams is yet to be explored. Therefore, a sensor layout based on fiber Bragg gratings (FBGs) in series was designed to measure the dynamic response of the CFRP antenna beam, and various vibration tests (sweep frequency test, simulated long-life vibration test, shock vibration test, functional vibration test, and constant frequency vibration test) were conducted. The time and frequency domain analysis on FBG sensing signals was performed to check the vibration performance and assess the health condition of this novel CFRP structure. The results indicate that strain values reach a maximum of only 300 µε under different test conditions. The antenna beam exhibited clear vibration patterns, with the first four intrinsic frequencies identified at 44, 94.87, 107.1, and 193.45 Hz. It shows that strain distribution and vibration modes of the antenna beam can be characterized from the sensing data, and the dynamic feature can be much more accurately assessed. The FBG sensors attached on the surface of CFRP antenna beam can accurately and stably measure the dynamic response, which validates that the interfaces between optical fiber sensing elements and CFRP material have excellent interfacial bonding characteristics. The novel CFRP antenna beam exhibits the excellent dynamic performance and stability, offering the replacement of traditional steel antenna beams. The study can finally instruct the development of self-sensing CFRP antenna beams assembled with FBGs in series.
Carbon fiber-reinforced polymer (CFRP) components were extensively used and current studies mainly refer to CFRP laminates. The dynamic performance of the complicated CFRP antenna beams is yet to be explored. Therefore, a sensor layout based on fiber Bragg gratings (FBGs) in series was designed to measure the dynamic response of the CFRP antenna beam, and various vibration tests (sweep frequency test, simulated long-life vibration test, shock vibration test, functional vibration test, and constant frequency vibration test) were conducted. The time and frequency domain analysis on FBG sensing signals was performed to check the vibration performance and assess the health condition of this novel CFRP structure. The results indicate that strain values reach a maximum of only 300 µε under different test conditions. The antenna beam exhibited clear vibration patterns, with the first four intrinsic frequencies identified at 44, 94.87, 107.1, and 193.45 Hz. It shows that strain distribution and vibration modes of the antenna beam can be characterized from the sensing data, and the dynamic feature can be much more accurately assessed. The FBG sensors attached on the surface of CFRP antenna beam can accurately and stably measure the dynamic response, which validates that the interfaces between optical fiber sensing elements and CFRP material have excellent interfacial bonding characteristics. The novel CFRP antenna beam exhibits the excellent dynamic performance and stability, offering the replacement of traditional steel antenna beams. The study can finally instruct the development of self-sensing CFRP antenna beams assembled with FBGs in series.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.