Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Idiopathic pulmonary fibrosis (IPF) is a devastating condition characterized by progressive lung scarring and uncontrolled fibroblast proliferation, inevitably leading to organ dysfunction and mortality. While elevated iron levels have been observed in patients and animal models of lung fibrosis, the mechanisms linking iron dysregulation to lung fibrosis pathogenesis, particularly the role of macrophages in orchestrating this process, remain poorly elucidated. Here we evaluate iron metabolism in macrophages during pulmonary fibrosis using both in vivo and in vitro approaches. In murine bleomycin- and amiodarone-induced pulmonary fibrosis models, we observed significant iron deposition and lipid peroxidation in pulmonary macrophages. Intriguingly, the ferroptosis regulator glutathione peroxidase 4 (GPX4) was upregulated in pulmonary macrophages following bleomycin instillation, a finding corroborated by single-cell RNA sequencing analysis. Moreover, macrophages isolated from fibrotic mouse lungs exhibited increased transforming growth factor (TGF)-β1 expression that correlated with lipid peroxidation. In vitro, iron overload in bone marrow-derived macrophages triggered lipid peroxidation and TGF-β1 upregulation, which was effectively suppressed by ferroptosis inhibitors. When co-cultured with iron-overloaded macrophages, lung fibroblasts exhibited heightened activation, evidenced by increased α-smooth muscle actin and fibronectin expression. Importantly, this pro-fibrotic effect was attenuated by treating macrophages with a ferroptosis inhibitor or blocking TGF-β receptor signaling in fibroblasts. Collectively, our study elucidates a novel mechanistic paradigm in which the accumulation of iron within macrophages initiates lipid peroxidation, thereby amplifying TGF-β1 production, subsequently instigating fibroblast activation through paracrine signaling. Thus, inhibiting iron overload and lipid peroxidation warrants further exploration as a strategy to suppress fibrotic stimulation by disease-associated macrophages.
Idiopathic pulmonary fibrosis (IPF) is a devastating condition characterized by progressive lung scarring and uncontrolled fibroblast proliferation, inevitably leading to organ dysfunction and mortality. While elevated iron levels have been observed in patients and animal models of lung fibrosis, the mechanisms linking iron dysregulation to lung fibrosis pathogenesis, particularly the role of macrophages in orchestrating this process, remain poorly elucidated. Here we evaluate iron metabolism in macrophages during pulmonary fibrosis using both in vivo and in vitro approaches. In murine bleomycin- and amiodarone-induced pulmonary fibrosis models, we observed significant iron deposition and lipid peroxidation in pulmonary macrophages. Intriguingly, the ferroptosis regulator glutathione peroxidase 4 (GPX4) was upregulated in pulmonary macrophages following bleomycin instillation, a finding corroborated by single-cell RNA sequencing analysis. Moreover, macrophages isolated from fibrotic mouse lungs exhibited increased transforming growth factor (TGF)-β1 expression that correlated with lipid peroxidation. In vitro, iron overload in bone marrow-derived macrophages triggered lipid peroxidation and TGF-β1 upregulation, which was effectively suppressed by ferroptosis inhibitors. When co-cultured with iron-overloaded macrophages, lung fibroblasts exhibited heightened activation, evidenced by increased α-smooth muscle actin and fibronectin expression. Importantly, this pro-fibrotic effect was attenuated by treating macrophages with a ferroptosis inhibitor or blocking TGF-β receptor signaling in fibroblasts. Collectively, our study elucidates a novel mechanistic paradigm in which the accumulation of iron within macrophages initiates lipid peroxidation, thereby amplifying TGF-β1 production, subsequently instigating fibroblast activation through paracrine signaling. Thus, inhibiting iron overload and lipid peroxidation warrants further exploration as a strategy to suppress fibrotic stimulation by disease-associated macrophages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.