This paper presents a new approach for detecting defects in analog integrated circuits using a feedforward neural network trained by the resilient error back-propagation method. A feed-forward neural network has been used for detecting faults in a simple analog CMOS circuit by representing the differences observed in power supply current of fault-free and faulty circuits. The identification of defects was performed in time and frequency domains, followed by a comparison of results achieved in both domains. We show that resilient backpropagation neural networks can be a very efficient and versatile approach for identifying defective analog circuits. Moreover, this approach is not limited to the supply current analysis, because it also offers monitoring of other circuit parameters. The type of defects detected by the resilient backpropagation neural networks, as well as other possible applications of this approach, are discussed.