Aim: A systematic review of the methods of 3D printing and the materials used so far for the manufacture of abutments was performed to evaluate whether their clinical use is indicated through the mechanical, chemical, and biological analyses carried out. Materials and Methods: An electronic search conducted by three independent reviewers was carried out in the PubMed, Web of Science, Cochrane Library, Science Direct, and Lilac databases. The inclusion criterion was researching articles in English that contained as subject the manufacturing of abutments through 3D printing/additive manufacturing. Any meta-analyses, reviews, book chapters, abstracts, letters, conferences papers, and studies without abutments printed were excluded. Results: We found 780 references, which after applying the exclusion criteria resulted in the final inclusion of seven articles for review. The studies had a high heterogeneity, showing different materials and methodologies to manufacture abutments, which makes a comparison between them difficult, and for this reason it was not possible to carry out a meta-analysis with the data found. Conclusions: Even with the limitations found in the present research, it is possible to conclude that printed abutments have adequate mechanical, chemical, and biological properties that can indicate their clinical use. 3D printing presents high accuracy and speed and can produce customized abutments according to each case.