The bacterial communities at two sulfidic, low salinity springs with no history of herbicide contamination were screened for their ability to grow on 2,4-dichlorophenoxyacetic acid (2,4-D). Nineteen isolates, closely matching the genera Bacillus, Halobacillus, Halomonas, Georgenia and Kocuria, showed diverse growth strategies on NaCl-supplemented and NaCl-free 2,4-D medium. The majority of isolates were halotolerant, growing best on nutrient rich broth with 0% or 5% NaCl; none of the isolates thrived in medium with 20% NaCl. The tfdA gene, which codes for an a – ketoglutarate dioxygenase and catalyzes the first step in 2,4-D degradation, was detected in nine of the salt spring isolates. The tfdAa gene, which shows ~60% identity to tfdA, was present in all nineteen isolates. Many of the bacteria described here were not previously associated with 2,4-D degradation suggesting these salt springs may contain microbial communities of interest for bioremediation.