This version is available at https://strathprints.strath.ac.uk/55554/ Strathprints is designed to allow users to access the research output of the University of Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. Please check the manuscript for details of any other licences that may have been applied. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge.Any correspondence concerning this service should be sent to the Strathprints administrator: strathprints@strath.ac.ukThe Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the management and persistent access to Strathclyde's intellectual output.
AbstractNanometric cutting of single crystal silicon on the different crystal orientations and at a wide range of temperatures (300 K-1500 K) was studied through molecular dynamics (MD) simulations using two sorts of interatomic potentials, an analytical bond order potential (ABOP) and a modified version of Tersoff potential, so as to explore the cutting chip characteristics and chip formation mechanisms. Smaller released thermal energy and larger values of chip ratio (ratio of the uncut chip thickness to the cut chip thickness) as well as shear plane angle were obtained when cutting was performed at higher temperatures or on the (111) crystal plane, implying an enhancement in machinability of silicon. Nonetheless, the subsurface deformation depth was observed to become deeper under the aforementioned conditions. Further analysis revealed a higher number of atoms in the chip when cutting was implemented on the (110) crystal plane, attributable to the lower position of the stagnation region which triggered less ploughing action of the tool on the silicon substrate. Regardless of temperature of the substrate the minimum chip velocity angle was found while cutting the (111) crystal plane of silicon substrate whereas the maximum chip velocity angle appeared on the (110) surface. A discrepancy between the two potential functions in predicting the chip 2 velocity angle was observed at high temperature of 1500 K, resulting from the overestimated phase instability and entirely molten temperatures of silicon by the ABOP potential. Another key observation was that the resultant force exerted by the rake face of the tool on the chip was found to decrease by 24 % when cutting silicon on the (111) surface at 1173 K compared to that at room temperature. Besides, smaller resultant force, friction coefficient at the tool/chip in...