2024
DOI: 10.1088/1674-1056/aceee9
|View full text |Cite
|
Sign up to set email alerts
|

Dynamical behavior of memristor-coupled heterogeneous discrete neural networks with synaptic crosstalk

Minglin 铭磷 Ma 马,
Kangling 康灵 Xiong 熊,
Zhijun 志军 Li 李
et al.

Abstract: Synaptic crosstalk is a prevalent phenomenon among neuronal synapses, playing a crucial role in the transmission of neural signals. Therefore, considering synaptic crosstalk behavior and investigating the dynamical behavior of discrete neural networks is highly necessary. In this paper, we propose a heterogeneous discrete neural network (HDNN) consisting of a three-dimensional KTz discrete neuron and a Chialvo discrete neuron. These two neurons are coupled mutually by two discrete memristors and the synaptic c… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
2
0
1

Year Published

2024
2024
2024
2024

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 26 publications
(3 citation statements)
references
References 64 publications
0
2
0
1
Order By: Relevance
“…The parameters are as follows: b = 2, c = 7, d = 4, k = 5, m = 0.1, n = 0.01. The fractional-order system, denoted as (19), is characterized by an order of e = 0.7, with 20,000 iterations and a step size of 0.005, operating within the parameter range of [10,14]. The Lyapunov exponent spectrum, depicted in Figure 6a, shows that when a varies within the interval [10,11], the three lines consistently remain close to or below zero, indicating no positive Lyapunov exponents and positioning the system (19) in a periodic state.…”
Section: Dynamic Analysis Of the 5d Fomhsmentioning
confidence: 99%
See 1 more Smart Citation
“…The parameters are as follows: b = 2, c = 7, d = 4, k = 5, m = 0.1, n = 0.01. The fractional-order system, denoted as (19), is characterized by an order of e = 0.7, with 20,000 iterations and a step size of 0.005, operating within the parameter range of [10,14]. The Lyapunov exponent spectrum, depicted in Figure 6a, shows that when a varies within the interval [10,11], the three lines consistently remain close to or below zero, indicating no positive Lyapunov exponents and positioning the system (19) in a periodic state.…”
Section: Dynamic Analysis Of the 5d Fomhsmentioning
confidence: 99%
“…Nonlinear science is theoretically significant and promising for practical applications across various life aspects. Over the past decade, researchers have extensively applied it in fields such as image encryption [1][2][3][4][5], electronic circuits [6][7][8][9][10], chaos synchronization [11][12][13][14][15], pseudo-random number generators [16][17][18][19][20], and neural networks [21][22][23][24][25], among others. The complex structure of chaotic attractors enhances their dynamic properties.…”
Section: Introductionmentioning
confidence: 99%
“…复杂、非易失存储及类神经突触可塑性等独特性质。因而,忆阻器是模拟生物神经突触的理 想器件 [21][22][23][24] ,为人工神经网络的构建提供了新的思路。局部有源性被认为是动力系统复杂性 的起源 [25] 。局部有源忆阻器能放大无限小能量振荡行为,应用于神经网络系统或神经元电 路时易于诱发各类神经形态放电行为 [26] 。因此,利用局部有源忆阻器模拟生物神经突触受 到越来越多的关注。将离散局部有源忆阻器引入人工神经网络或神经元,可以更准确地模拟 生物神经元之间的电活动和信息传递,有助于揭示神经系统疾病的电生理学机制。文献 [27] 基于无离散忆阻器、离散忆阻器模拟电磁辐射刺激、离散局部有源忆阻器模拟生物突触等方 式构建了三种离散神经网络模型;研究表明,离散忆阻器可使得神经网络模型产生更为复杂 的混沌放电动力学行为。文献 [28]构建了一类离散忆阻 Rulkov 神经元模型,研究发现忆阻 器可以有效地模拟离散神经元模型的磁感应效应。此外,文献 [29]研究了基于离散忆阻器的 分数阶神经网络,发现其具有比整数阶神经网络更丰富的动力学行为。事实上,生物神经信 息的处理和传递由不同脑区神经元的电磁活动共同完成,因此,探索异质离散神经网络的放 电动力学和同步行为具有重要实际意义 [13] 。 突触间的串扰由神经递质从一个突触溢出至另一个突触引起。 突触神经递质的溢出将对 相邻突触的连接强度产生干扰,因此,突触串扰将影响神经信号的放电及传输特性 [30,31] 。文 献 [32]提出一种基于忆阻器突触的联想记忆电路,并研究了突触串扰对忆阻器功能的影响。 文献 [33]揭示了不同串扰强度下,忆阻器耦合 HR 神经网络平衡点的数量和稳定性具有多样 性。另外,越来越多的证据表明,突触串扰存在于多个不同大脑区域。例如,文献 [34]建立 了一个异质神经网络,探讨了串扰强度对神经网络放电活动的影响,发现随着串扰强度的降 低,异质神经元的放电行为从初始振荡逐渐过渡到完全同步。文献 [35]则从数值模拟角度探 讨了串扰强度对异质离散神经网络放电行为和同步行为的影响。然而,目前尚没有关于突触 串扰强度对神经网络共存放电行为影响的研究。事实上,共存放电意味着神经系统的不同等 待状态 [36]…”
Section: 忆阻器被认为是除电阻、电容和电感之外的第四类无源电路元件,具有纳米尺寸、本征unclassified