Maternally inherited Wolbachia bacteria are being introduced into vector mosquito populations, with the goal of reducing the transmission of diseases such as dengue fever. The infection dynamics of Wolbachia depends upon the ability of Wolbachia to manipulate host reproduction as well as any fitness costs imposed upon the host. Some vector mosquito species are opportunistic blood feeders, utilizing both human and nonhuman vertebrate hosts, and the effects of bloodmeal source on Wolbachia phenotype is not well understood. Here we transfer wMelPop Wolbachia from Drosophila melanogaster (Meigen) into wild-type Aedes albopictus (Skuse) and characterize the resulting triple infection by examining for an effect of human and mouse blood on the Wolbachia infection persistence and phenotypes. When provided with human blood, the triple Wolbachia infection was persistent, with high maternal inheritance and relatively little fecundity cost, and a pattern of imperfect unidirectional cytoplasmic incompatibility was observed in mating experiments between wild-type and triply infected individuals. With mouse blood, reduced female fecundity and low maternal inheritance were observed in wMelPop-infected females, which affected the typical pattern of unidirectional CI. Our findings indicate the interactive effects of Wolbachia infection and blood source drive distinct shifts in the Wolbachia-host symbiotic association.