Summary:
Ictal EEG source imaging (ESI) is an advancing and growing application for presurgical epilepsy evaluation. For far too long, localization of seizures with scalp EEG has continued to rely on visual inspection of tracings arranged in a variety of montages allowing, at best, rough estimates of seizure onset regions. This most critical step is arguably the weakest point in epilepsy localization for surgical decision-making in clinical practice today. This review covers the methods and strategies that have been developed and tested for the performance of ictal ESI. It highlights practical issues and solutions toward sound implementation while covering differing methods to tackle the challenges specific to ictal ESI—noise and artifact reduction, component analysis, and other tools to increase seizure-specific signal for analysis. Further, validation studies to date—those with both high and low density numbers of electrodes—are summarized, providing a glimpse at the relative accuracy of ictal ESI in all types of focal epilepsy patients. Finally, given the added noninvasive information (greater degree of spatial resolution compared with standard ictal EEG review), the role of ictal ESI and its clinical utility in the presurgical evaluation is discussed.