Salinity stress is one of the most vital abiotic stresses which results in significant damages of agricultural production, particularly in arid and semi-arid areas of the world. Salinity causes by high accumulation of soluble salt, especially NaCl in soil and water. Salinity hampers the growth and survival of many field crops such as rice, wheat, maize, cotton, sugarcane, and sorghum. It affects the plant growth by three ways such as osmotic stress linked with an increase of phytotoxic ions, ionic stress e in the cytosol, and oxidative stress facilitated by reactive oxygen species (ROS). These stresses caused by salinity hinder the water uptake, causes ion imbalance, ROS production, and hormonal imbalance, and results in the decline of photosynthesis activities reduce the plant growth and final yield. However, the sensitivity of field crops depends on the nature of cultivar and growth stages. There are many strategies to cope with salinity stress which are the development of salinity tolerant crop cultivators by using genetic and molecular techniques such as QTLs and CRISPR CAS9 technique, nutrients management strategies, use of hormones regulators (AVG, 1-MCP, D-31). This chapter will give a brief idea to the scientist to understand the effects of salinity on field crops and their management strategies.