Aims: Greenhouses are widely used in agriculture systems to shield crops from unfavourable weather to achieve a year-round food supply. In recent years, aquaculture ponds have been placed in greenhouses in many regions. The impacts of the greenhouses on planktonic bacterial communities should be uncovered.
Methods and Results:In this study, two polyolefin film greenhouses accommodating aquaculture ponds were established and planktonic bacterial communities were compared from samples taken in aquaculture ponds inside and outside the greenhouses, using Illumina 16S rRNA sequencing.
Conclusions:The results showed there were significant variations in bacterial community structure between indoor and outdoor samples. Obvious differences were also found between two greenhouses, whereas the differences in indoor samples were weaker than outdoor samples. Significantly higher temperature (in summer), pH and permanganate index were found in the outdoor pond samples. Results of redundancy analysis showed that Proteobacteria and Bacteroidota were positively related to the dissolved oxygen, total nitrogen and total phosphorus, and Actinobacteriota were positively related to pH, temperature and permanganate index, whereas Cyanobacteria were positively related to the salinity, conductivity, total dissolved solids and ammonia nitrogen.
Significance and Impact of the Study:The results of this study revealed that greenhouses significantly influenced planktonic bacterial communities in aquaculture ponds. This study is expected to provide a scientific basis for aquaculture in greenhouses.