Diagnosis of methane plasma, generated in an atmospheric pressure dielectric barrier discharge (DBD) microplasma jet with a quartz tube as dielectric material by a 25 kHz sinusoidal ac power source, is conducted by optical emission spectroscopy (OES). The reactive radicals in methane plasma such as CH, C2, and H𝛼 are detected insitu by OES. The possible dissociation mechanism of methane in diluted Ar plasma is deduced from spectra. In addition, the density of CH radical, which is considered as one of the precursors in diamond-like (DLC) film formation, affected by the parameters of input voltage and the feed gas flow rate, is emphasized. With the Boltzmann plots, four Ar atomic spectral lines (located at 675.28 nm, 687.13 nm, 738.40 nm and 794.82 nm, respectively) are chosen to calculate the electron temperature, and the dependence of electron temperature on discharge parameters is also investigated.