2011
DOI: 10.1016/j.mechmachtheory.2011.02.002
|View full text |Cite
|
Sign up to set email alerts
|

Effects of eccentricity defect on the nonlinear dynamic behavior of the mechanism clutch-helical two stage gear

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

1
7
0
1

Year Published

2013
2013
2024
2024

Publication Types

Select...
6
2

Relationship

1
7

Authors

Journals

citations
Cited by 29 publications
(17 citation statements)
references
References 11 publications
1
7
0
1
Order By: Relevance
“…µ s and µ D are respectively the static and dynamic friction coefficients, ε is a factor which controls the gradient of exponential decaying and σ is the conditioning factor that controls the smoothing level at the discontinuity of this function. The ε and σ values are verified with those by Walha et al (2011), and they are equal to: ε = 2 and σ = 50.…”
Section: Vehicle Clutch Modellingsupporting
confidence: 67%
See 1 more Smart Citation
“…µ s and µ D are respectively the static and dynamic friction coefficients, ε is a factor which controls the gradient of exponential decaying and σ is the conditioning factor that controls the smoothing level at the discontinuity of this function. The ε and σ values are verified with those by Walha et al (2011), and they are equal to: ε = 2 and σ = 50.…”
Section: Vehicle Clutch Modellingsupporting
confidence: 67%
“…Templin and Egardt (2009) investigated a torsional drivetrain model with only two degrees of freedom. A more detailed model was developed by Walha et al (2011) to study the effect of the eccentricity defect on the dynamic behavior of a coupled clutch-helical two stage gear system. Brancati et al (2007) intend to modeled and investigate the effect of oil damping on the dynamic behavior where the considered model was constituted by a flywheel, clutch and gear pairs of an automotive transmission.…”
Section: Introductionmentioning
confidence: 99%
“…The previous mentioned dynamic models of helical gears motion (Walha et al 2011;Atanasovska et al 2012), use simplified stiffness variable called total mesh stiffness c 0 that is sum of total teeth pair stiffness for all simultaneously meshed teeth pairs. For involute helical gears, that means: where: c i ' is average teeth pair stiffness for ith teeth pair in contact and B i is length of line of contact for ith teeth pair.…”
Section: Teeth Stiffness and Mesh Stiffnessmentioning
confidence: 99%
“…In general, a pair of gears is simulated with two disks coupled with non-linear mesh stiffness and mesh damping, (Umezawa et al 1986;Parker et al 2000). Many authors confirmed this simplified dynamic model and focus their investigation resources on various influence factors (Walha et al 2011;Atanasovska et al 2012). Moradi and Salarieh (2012) in their latest paper point out the importance of studying the nonlinear oscillations of gears from aspect of competitive limitations of noise level and vibrations in last decade.…”
Section: Introductionmentioning
confidence: 96%
“…WALHA 等 [12] 建立了两级斜齿轮耦合的汽车离合器 模型,模型中分析了偏心对传动系统的影响。文献 [13][14]在考虑静态传递误差,齿轮几何偏心等因素 的影响,建立了平行轴系齿轮转子系统的有限元模 型。分析了静态传递误差、转子质量不平衡/齿轮几 何偏心以及三者耦合对系统动力学特性的影响。研 究结果表明,齿轮几何偏心对啮合力有很大影响, 其作用相当于一个扭矩作用于齿轮。郜浩冬等 [15] 建 立了考虑齿侧间隙,齿面摩擦力和时变啮合刚度等 因素的三齿轮扭转振动模型。分析了布局参数对齿 面摩擦力和时变啮合刚度的影响,研究了不同摩擦 因数对系统动态响应的影响以及有无摩擦因数对系 统混沌运动的影响。 WANG 等 [16] 考虑了参数随机扰 动性对齿轮系统动的影响,建立了单自由度的随机 动态模型。数值仿真表明:随着齿轮时变啮合刚度 的增大,齿轮传动系统从周期运动通过倍化分岔通 向混沌运动;在啮合刚度的随机扰动不是很大时, 系统解的周期结构不会发生大的变化。张慧博等 [17] 建立了考虑径向间隙与动态齿侧间隙耦合的齿轮-转子系统动力学模型,分析了径向间隙与齿侧间隙 的耦合关系及其对齿轮传动系统动力学特性的影 响。文献 [18]在考虑时变啮合刚度,非线性油膜力 等非线性因素影响下,建立了非线性时变的齿轮-转子-轴承传动系统的动力学模型, 分析了非线性油 膜力和动态啮合力对传动系统的影响规律。CHEN 等 [19] 应用分形理论将动态间隙和齿面修行相结合, 对齿轮的动态性能进行了研究。并得出降低分形维 数,减小啮合刚度的时变性和增加阻尼系数来提高 齿轮传动系统的稳定性。HAN 等 [20] 在考虑旋转、 俯仰以及偏航三种角运动的基础上研究了齿轮传动 系统弯扭耦合的动态响应特性,并研究了传递误差 以及不平衡质量对传动系统的影响。最后得出扭转 运动对齿轮系统的动态特性有较大的影响。 通过前面的文献研究可以看出,现有齿轮动力 学模型大多数只是考虑啮合的齿轮副参数的影响, 而忽略了支撑轴承、外部激励的时变性等非线性因 素的影响。而考虑带偏心的斜齿轮-转子-轴承传动 系统的弯-扭-轴耦合振动模型的文献也不多见。在 总结前人经验的基础上,推导了考虑轴向力的角接 触球轴承的动力学模型,并在计入综合传递误差、 重力激励、齿轮偏心影响的基础上,建立了斜齿轮-转子-轴承传动系统的非线性动力学模型, 研究了转 速、齿轮偏心、轴承游隙等非线性参量变化对斜齿 轮传动系统动力学特性的影响。 1 斜齿轮-转子-轴承系统模型…”
unclassified